A Sacks amoeba preserving distributivity of $\mathcal{P}(\omega)/\mathit{fin}$

Wolfgang Wohofsky

joint work with Otmar Spinas

till today: Universität Kiel, Germany from tomorrow: Kurt Gödel Research Center, Vienna (KGRC)

wolfgang.wohofsky@gmx.at

Winter School in Abstract Analysis, section Set Theory Hejnice, Czech Republic, 26th Jan – 2th Feb 2019

Assume CH. Let $\langle (\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}) : \alpha < \omega_2 \rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha} = \dot{\mathbb{A}}$ for each $\alpha < \omega_2$. Then in the final model $V^{\mathbb{P}_{\omega_2}}$ we have

Assume CH. Let $\langle (\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}) : \alpha < \omega_2 \rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha} = \dot{\mathbb{A}}$ for each $\alpha < \omega_2$. Then in the final model $V^{\mathbb{P}_{\omega_2}}$ we have

Assume CH. Let $\langle (\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}) : \alpha < \omega_2 \rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha} = \dot{\mathbb{A}}$ for each $\alpha < \omega_2$. Then in the final model $V^{\mathbb{P}_{\omega_2}}$ we have

$$\omega_1 = \operatorname{cov}(\mathcal{N}) = \operatorname{cov}(\mathcal{M}) = \mathfrak{h} < \operatorname{add}(\mathfrak{s}^0) = \mathfrak{s} = \mathfrak{b} = \mathfrak{c} = \omega_2.$$

Definition

Let \mathbb{P} be a tree forcing (on $2^{<\omega}$). Then

$$J(\mathbb{P}) := \{X \subseteq 2^{\omega} : \forall p \in \mathbb{P} \ \exists q \in \mathbb{P} \text{ with } q \leq p \text{ and } [q] \cap X = \emptyset\}$$

denotes the null ideal associated to \mathbb{P} . (Analog., for tree forcings on $\omega^{<\omega}$.)

Examples:

- $s^0 := J(S)$ be the Marczewski ideal (or ideal of Marczewski null sets),
- $\ell^0 := J(\mathbb{L})$ be the ideal of Laver null sets,
- $m^0 := J(\mathbb{M})$ be the ideal of Miller null sets.

(all these ideals are σ -ideals – due to fusion)

Assume CH. Let $\langle (\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}) : \alpha < \omega_2 \rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha} = \dot{\mathbb{A}}$ for each $\alpha < \omega_2$. Then in the final model $V^{\mathbb{P}_{\omega_2}}$ we have

Assume CH. Let $\langle (\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}) : \alpha < \omega_2 \rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha} = \dot{\mathbb{A}}$ for each $\alpha < \omega_2$. Then in the final model $V^{\mathbb{P}_{\omega_2}}$ we have

 $\omega_1 = \operatorname{cov}(\mathcal{N}) = \operatorname{cov}(\mathcal{M}) = \mathfrak{h} < \operatorname{add}(\mathfrak{s}^0) = \mathfrak{s} = \mathfrak{b} = \mathfrak{c} = \omega_2.$

Theorem (Goldstern-Repický-Shelah-Spinas)

• If $\mathfrak{b} = \mathfrak{c}$, then $\operatorname{add}(\ell^0) \leq \mathfrak{h}$.

2 If $\mathfrak{d} = \mathfrak{c}$, then $\operatorname{add}(m^0) \leq \mathfrak{h}$.

Corollary

- $CON(add(\ell^0) < add(s^0))$

- $CON(add(\ell^0) < add(s^0))$

What about the cofinalities of these ideals?

Theorem (Fremlin; Judah-Miller-Shelah)

 $\operatorname{cof}(s^0) > \mathfrak{c}$

Theorem (Brendle-Khomskii-W.)

 $\operatorname{cof}(\ell^0) > \mathfrak{c}$ and $\operatorname{cof}(m^0) > \mathfrak{c}$

- $OV(add(\ell^0) < add(s^0))$

Theorem (Shelah-Spinas)

Let \mathbb{Q}_0 , \mathbb{Q}_1 be forcings with $\mathbb{Q}_0, \mathbb{Q}_1 \in \{\mathbb{S}, \mathbb{L}, \mathbb{M}, Silver, Mathias\}$ such that

 $\omega_1 = \operatorname{add}(J(\mathbb{Q}_0)) < \operatorname{add}(J(\mathbb{Q}_1)) = \omega_2 \text{ is consistent},$

then

 $\operatorname{cof}(J(\mathbb{Q}_1)) < \operatorname{cof}(J(\mathbb{Q}_0)) = 2^{\mathfrak{c}} \text{ is consistent.}$

- $ON(add(\ell^0) < add(s^0))$
- $O CON(\mathrm{add}(m^0) < \mathrm{add}(s^0))$

Theorem (Shelah-Spinas)

Let \mathbb{Q}_0 , \mathbb{Q}_1 be forcings with $\mathbb{Q}_0, \mathbb{Q}_1 \in \{\mathbb{S}, \mathbb{L}, \mathbb{M}, \textit{Silver}, \textit{Mathias}\}$ such that

 $\omega_1 = \operatorname{add}(J(\mathbb{Q}_0)) < \operatorname{add}(J(\mathbb{Q}_1)) = \omega_2 \text{ is consistent},$

then

 $\operatorname{cof}(J(\mathbb{Q}_1)) < \operatorname{cof}(J(\mathbb{Q}_0)) = 2^{\mathfrak{c}} \text{ is consistent.}$

Corollary (in fact, the incentive for the Main Theorem)

- $CON(cof(s^0) < cof(\ell^0))$
- **2** $CON(cof(s^0) < cof(m^0))$

Assume CH. Let $\langle (\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}) : \alpha < \omega_2 \rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha} = \dot{\mathbb{A}}$ for each $\alpha < \omega_2$. Then in the final model $V^{\mathbb{P}_{\omega_2}}$ we have

Assume CH. Let $\langle (\mathbb{P}_{\alpha}, \hat{\mathbb{Q}}_{\alpha}) : \alpha < \omega_2 \rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha} = \dot{\mathbb{A}}$ for each $\alpha < \omega_2$. Then in the final model $V^{\mathbb{P}_{\omega_2}}$ we have

 $\omega_1 = \operatorname{cov}(\mathcal{N}) = \operatorname{cov}(\mathcal{M}) = \mathfrak{h} < \operatorname{add}(\mathfrak{s}^0) = \mathfrak{s} = \mathfrak{b} = \mathfrak{c} = \omega_2.$

We only know of two other models in which $\mathfrak{h} < \mathfrak{s} = \mathfrak{b}$ holds true:

- Shelah's model for $\omega_1 = \mathfrak{h} < \mathfrak{s} = \mathfrak{b} = \operatorname{cov}(\mathcal{M}) = \mathfrak{c} = \omega_2$
- 2 Jossen and Spinas' model for $\omega_1 = \operatorname{cov}(\mathcal{M}) = \mathfrak{h} < \mathfrak{s} = \mathfrak{b} = \mathfrak{c} = \omega_2$

$$\omega_1 = \operatorname{cov}(\mathcal{N}) = \operatorname{cov}(\mathcal{M}) = \mathfrak{h} < \operatorname{add}(\mathfrak{s}^0) = \mathfrak{s} = \mathfrak{b} = \mathfrak{c} = \omega_2.$$

For $f,g \in \omega^{\omega}$, we write $f \leq^* g$ if $f(n) \leq g(n)$ for all but finitely many n.

Definition ((un)bounding number)

 $\mathfrak{b} := \min\{|F| : F \subseteq \omega^{\omega} \land \neg \exists g \in \omega^{\omega} \ (f \leq^* g \text{ for each } f \in F)\}$

Given $a, b \in [\omega]^{\omega}$, we say that a splits b if both $b \cap a$ and $b \setminus a$ are infinite.

Definition (splitting number(s))

$$\mathfrak{s} := \min\{|F| : F \subseteq [\omega]^{\omega} \land \forall b \in [\omega]^{\omega} \exists a \in F (a \text{ splits } b)\}$$

 $\mathfrak{s}_{\sigma} := \min\{|F|: F \subseteq [\omega]^{\omega} \land \forall \langle b_n \rangle_{n \in \omega} \subseteq [\omega]^{\omega} \ \exists a \in F \ \forall n \in \omega \ (a \text{ splits } b_n)\}$

Clearly, $\mathfrak{s} \leq \mathfrak{s}_{\sigma}$.

Question (old open question)

Is it consistent with ZFC that $\mathfrak{s} < \mathfrak{s}_{\sigma}$?

Theorem (Hein-Spinas; for regular c: Simon, Judah-Miller-Shelah)

 $\operatorname{add}(s^0) \leq \mathfrak{b}.$

Let

 $\mathfrak{a}(\mathbb{S}):=\min\{|A|:|A|>\aleph_0\ \land\ A\subseteq\mathbb{S}\ \mathrm{is\ a\ maximal\ antichain}\}.$

 ${\sf Clearly}, \ \aleph_1 \leq \mathfrak{a}(\mathbb{S}) \leq \mathfrak{c}.$

Theorem (Hein-Spinas)

 $\mathfrak{d} \leq \mathfrak{a}(\mathbb{S}).$

Theorem (Hein-Spinas; for regular c: Simon, Judah-Miller-Shelah)

 $\operatorname{add}(s^0) \leq \mathfrak{b}.$

Theorem (Hein-Spinas)

 $\mathfrak{d} \leq \mathfrak{a}(\mathbb{S}).$

Corollary

 $\operatorname{add}(s^0) \leq \mathfrak{a}(\mathbb{S}).$

Theorem (Spinas-W.)

Assume
$$\mathfrak{a}(\mathbb{S}) = \mathfrak{c}$$
. Then $\operatorname{add}(s^0) \leq \mathfrak{s}_{\sigma}$.

Corollary

$$\operatorname{add}(s^0) = \mathfrak{c} \text{ implies } \mathfrak{s}_{\sigma} = \mathfrak{c}.$$

 $\operatorname{add}(s^0) = \mathfrak{c} \text{ implies } \mathfrak{s}_{\sigma} = \mathfrak{c}.$

Question

Does $\operatorname{add}(s^0) = \mathfrak{c}$ imply $\mathfrak{s} = \mathfrak{c}$?

Theorem (Spinas-W.; from previous slide)

Assume $\mathfrak{a}(\mathbb{S}) = \mathfrak{c}$. Then $\operatorname{add}(s^0) \leq \mathfrak{s}_{\sigma}$.

Theorem (Spinas-W.)

Assume $\mathfrak{a}(\mathbb{S}) = \mathfrak{c}$ and $\operatorname{add}(s^0) \leq \operatorname{cov}(\mathcal{M})$. Then $\operatorname{add}(s^0) \leq \mathfrak{s}$.

Corollary

$$\operatorname{add}(s^0) = \operatorname{cov}(\mathcal{M}) = \mathfrak{c}$$
 implies $\mathfrak{s} = \mathfrak{c}$.

Given $p \in S$, let $s_p = \langle s_p(i) : i < \omega \rangle$ be the canonical enumeration of the splitting nodes of p.

Definition (increasing Sacks amoeba, by Louveau-Shelah-Veličković)

Elements of \mathbb{A} are pairs $\boldsymbol{p} = (p, n)$ such that

•
$$p \in \mathbb{S}$$
,

•
$$n < \omega$$
 (we call $n =: dp(\mathbf{p})$ the depth of \mathbf{p}),

• p is increasing (meaning that $\langle |s_p(i)| : i < \omega \rangle$ is strictly increasing).

Given $oldsymbol{p}=(p,n^p),oldsymbol{q}=(q,n^q)\in\mathbb{A}$, we let $oldsymbol{q}\leqslantoldsymbol{p}$ if

•
$$q \leq p$$
,

•
$$n^p \leq n^q$$
,

•
$$s_q(i) = s_p(i)$$
 for each $i \leq n^p$.

We say $\boldsymbol{q} \leq 0 \boldsymbol{p}$ (\boldsymbol{q} is a pure extension of \boldsymbol{p}) if $\boldsymbol{q} \leq \boldsymbol{p} \wedge n^q = n^p$.

Moreover, we have stronger relations \leq^m for constructing fusion sequences.

Theorem (Pure decision)

Suppose $N \in \omega$, $\boldsymbol{p} \in \mathbb{A}$, and $\boldsymbol{p} \Vdash \dot{\mu} \in N$. Then there is $\boldsymbol{q} \leq^0 \boldsymbol{p}$ and $i \in N$ such that $\boldsymbol{q} \Vdash \dot{\mu} = i$.

Moreover: for each $m \in \omega$, there are $F \subseteq N$ with $|F| \leq 3^m$ and $q \leq^m p$ such that $q \Vdash \dot{\mu} \in F$.

Theorem

 \mathbb{A} has the Laver property.

In particular, no Cohen reals and no random reals are added by $\mathbb{A},$ so

$$\operatorname{cov}(\mathcal{N}) = \operatorname{cov}(\mathcal{M}) = \omega_1$$

in the final model $V^{\mathbb{P}_{\omega_2}}$ of our Main Theorem.

A increases $add(s^0)$ (actually the purpose of every Sacks amoeba):

Theorem (well-known)

Assume CH. Let $\langle (\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}) : \alpha < \omega_2 \rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha} = \dot{\mathbb{A}}$ for each $\alpha < \omega_2$. Then in the final model $V^{\mathbb{P}_{\omega_2}}$ we have

$$\operatorname{add}(s^0) = \omega_2.$$

Several ways to to read off a dominating real d from the generic, e.g.

 $d(n) := |s_{p_G}(n)|,$

where $s_{p_G} = \langle s_{p_G}(i) : i < \omega \rangle$ is the canonical enumeration of the splitting nodes of the generic tree p_G .

Theorem (easy)

 \mathbb{A} adds a dominating real. More specifically:

 $\Vdash \dot{d} \text{ is a dominating real.}$

Hence

$$\mathfrak{b} = \omega_2$$

in the final model $V^{\mathbb{P}_{\omega_2}}$ of our Main Theorem.

Let $x \in [p_G]$ be the leftmost (or any) branch through the generic tree p_G ; then

$$\operatorname{split}(p_G) \cap \{x \upharpoonright n : n \in \omega\}$$

is not split by any set $a \in [2^{<\omega}]^{\omega}$ from the ground model. So:

Theorem (quite easy)

 \mathbb{A} adds a real which is not split by any ground model real.

Hence

$$\mathfrak{s} = \omega_2$$

in the final model $V^{\mathbb{P}_{\omega_2}}$ of our Main Theorem.

So why is

$$\mathfrak{h}=\omega_1$$

in the final model $V^{\mathbb{P}_{\omega_2}}$ of our Main Theorem?

TR

"You want proof? I'll give you proof!"

"You want proof? I'll give you proof!"

http://www.math.uni-kiel.de/logik/de/spinas/a-sacks-amoeba-preserving-distributivity-of-p-omega-fin-with-w-wohofsky

Let $x, y \in [\omega]^{\omega}$.

- x is almost contained in y $(x \subseteq^* y)$ if $x \setminus y$ is finite
- x and y are almost disjoint if $x \cap y$ is finite

Definition

A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is an almost disjoint (ad) if

x and y are almost disjoint for each $x, y \in \mathcal{A}$ with $x \neq y$.

 \mathcal{A} is maximal almost disjoint (mad) family if it is a maximal ad family; in other words: and for each $z \in [\omega]^{\omega}$ there is an $x \in \mathcal{A}$ with $|z \cap x| = \aleph_0$.

Definition

 \mathcal{A}_1 refines \mathcal{A}_0 if for each $x \in \mathcal{A}_1$ there is $y \in \mathcal{A}_0$ with $x \subseteq^* y$.

 $\langle \mathcal{A}_{\nu} : \nu < \omega_1 \rangle$ is a matrix (of mad families) if \mathcal{A}_{ν} is mad for each $\nu < \omega_1$, and \mathcal{A}_{ν_1} refines \mathcal{A}_{ν_0} for any $\nu_0 \leq \nu_1 < \omega_1$.

Definition

We say that $a \in [\omega]^{\omega}$ intersects a matrix $\langle \mathcal{A}_{\nu} : \nu < \omega_1 \rangle$ if

for each $\nu < \omega_1$ there is a $y \in \mathcal{A}_{\nu}$ with $a \subseteq^* y$.

A matrix is intersected if there is a real $a \in [\omega]^{\omega}$ intersecting it.

The following is more or less by definition:

Fact

 $\mathfrak{h} = \omega_1$ if and only if there exists a matrix $\langle \mathcal{A}_{\nu} : \nu < \omega_1 \rangle$ of mad families which is not intersected.

Theorem (main part of our main theorem)

Assume CH. Let $\langle (\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}) : \alpha < \omega_2 \rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha} = \dot{\mathbb{A}}$ for each $\alpha < \omega_2$.

Then in the final model $V^{\mathbb{P}\omega_2}$ we have a matrix which is not intersected, hence

 $\mathfrak{h}=\omega_1.$

Proof.

- define the notion of a well-prepared matrix
- show that a well-prepared matrix is not intersected (never: not after forcing with A, nor later – using Laver property)
- construct a well-prepared matrix in the ground model
- $\bullet~\mathbb{A}$ adds dominating reals, so madness is destroyed all the time
- so we have to (cofinally) extend our matrix along the iteration

Theorem

In V, let $\langle \mathcal{A}_{\nu}: \nu < \omega_1 \rangle$ be a well-prepared matrix. Then

 $V^{\mathbb{A}} \models$ the matrix $\langle \mathcal{A}_{\nu} : \nu < \omega_1 \rangle$ is not intersected,

where $V^{\mathbb{A}}$ is the extension by a single Sacks amoeba forcing \mathbb{A} .

Moreover, the same holds true in any further Laver property extension:

 $V^{\mathbb{A}\ast\dot{\mathbb{R}}}\models$ the matrix $\langle \mathcal{A}_{\nu}:\nu<\omega_1\rangle$ is not intersected,

where $\dot{\mathbb{R}}$ is forced to have the Laver property.

Theorem

In V, let $\langle \mathcal{A}_{\nu}:\nu<\omega_1\rangle$ be a well-prepared matrix. Then

 $V^{\mathbb{A}} \models$ the matrix $\langle \mathcal{A}_{\nu} : \nu < \omega_1 \rangle$ is not intersected,

where $V^{\mathbb{A}}$ is the extension by a single Sacks amoeba forcing \mathbb{A} .

Theorem

In V, let $\langle \mathcal{A}_{\nu}: \nu < \omega_1 \rangle$ be a well-prepared matrix. Then

 $V^{\mathbb{A}} \models$ the matrix $\langle \mathcal{A}_{\nu} : \nu < \omega_1 \rangle$ is not intersected,

where $V^{\mathbb{A}}$ is the extension by a single Sacks amoeba forcing \mathbb{A} .

Definition

We call a matrix $\langle \mathcal{A}_{\nu} : \nu < \omega_1 \rangle$ a well-prepared matrix if

for each labelled condition $(\boldsymbol{q}, \lambda)$ there is $\boldsymbol{q}_0 \leqslant^0 \boldsymbol{q}$ and $\gamma < \omega_1$ such that the following holds:

there is no $\boldsymbol{q}' \leq^0 \boldsymbol{q}_0$ with $\mathcal{K}(\boldsymbol{q}')$ "deciding" $\langle \mathcal{A}_{\nu} : \nu < \gamma \rangle$.

Let $E_{xt}(q)$ be the set of maximal elements of the set

$$\{\boldsymbol{r}\leqslant \boldsymbol{q}:dp(\boldsymbol{r})=dp(\boldsymbol{q})+1\}.$$

For $\mathbf{r} = (r, n^r) \in \mathbb{A}$, let

$$\sigma(\mathbf{r}) := \mathbf{s}_r(\mathbf{n}^r),$$

i.e., the last splitting node of r which still belongs to the "fixed" part of r.

Definition

Let $q \in \mathbb{A}$. We say that $\lambda : Ext(q) \rightarrow \omega$ is a labelling function for q if

 $\lambda(\mathbf{r}_0) \neq \lambda(\mathbf{r}_1)$ whenever $\mathbf{r}_0, \mathbf{r}_1 \in Ext(\mathbf{q})$ with $\sigma(\mathbf{r}_0) \neq \sigma(\mathbf{r}_1)$.

We call $(\boldsymbol{q}, \lambda)$ a labelled condition.

Let $K(\boldsymbol{q}) := \{\lambda(\boldsymbol{r}) : \boldsymbol{r} \in Ext(\boldsymbol{q})\}$

Imagine \dot{a} is an A-name for a potential candidate for intersecting a matrix of mad families, i.e., an A-name for an infinite subset of ω ; the idea is to segment it by the interval partition

$$\{[d(n-1),d(n)):n\in\omega\}$$

given by the dominating real d. We can assume without generality that

$$\Vdash |\dot{a} \cap [\dot{d}(n-1), \dot{d}(n))| \leq 1;$$

let \dot{a}_n be such that

$$\Vdash \{\dot{a}_n\} = \dot{a} \cap [\dot{d}(n-1), \dot{d}(n))$$

in case $\dot{a} \cap [\dot{d}(n-1),\dot{d}(n))$ is non-empty, and

$$\Vdash \dot{a}_n = \text{Empty}$$

otherwise.

Wolfgang Wohofsky (Uni Kiel / KGRC)

We say that $f : Ext(\mathbf{p}) \to F$ is an open coloring if for $\mathbf{q} \in Ext(\mathbf{p})$, we have

$$\boldsymbol{q}' \leqslant^0 \boldsymbol{q} \implies f(\boldsymbol{q}') = f(\boldsymbol{q}).$$

BlackBox

Let $\boldsymbol{p} \in \mathbb{A}$, and $f : Ext(\boldsymbol{p}) \to F$ be open coloring with finitely many colors. Then there is $\boldsymbol{q} \leq p$ and $c \in F$ such that $f(\boldsymbol{r}) = c$ for each $\boldsymbol{r} \in Ext(\boldsymbol{q})$.

BlackBox

Let $\boldsymbol{p} \in \mathbb{A}$, and $f : Ext(\boldsymbol{p}) \to \omega$ be an open coloring. Then there is $\boldsymbol{q} \leq^0 \boldsymbol{p}$ such that either (i) or (ii) holds: • there is an $\ell \in \omega$ such that $f(\boldsymbol{r}) = \ell$ for each $\boldsymbol{r} \in Ext(\boldsymbol{q})$, • $f(\boldsymbol{r}_0) \neq f(\boldsymbol{r}_1)$ whenever $\boldsymbol{r}_0, \boldsymbol{r}_1 \in Ext(\boldsymbol{q})$ with $\sigma(\boldsymbol{r}_0) \neq \sigma(\boldsymbol{r}_1)$.

Smrk 2019 (in fact, yesterday)

Smrk 2019 (in fact, yesterday)

Hejnice 2011

Hejnice 2011

Hejnice 2011