A Sacks amoeba preserving distributivity of $\mathcal{P}(\omega) /$ fin

Wolfgang Wohofsky

joint work with Otmar Spinas

till today: Universität Kiel, Germany
from tomorrow: Kurt Gödel Research Center, Vienna (KGRC)
wolfgang. wohofsky@gmx.at

Winter School in Abstract Analysis, section Set Theory Hejnice, Czech Republic, 26th Jan - 2th Feb 2019

Main Theorem (Spinas-W.)

Assume CH . Let $\left\langle\left(\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}\right): \alpha<\omega_{2}\right\rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha}=\dot{\mathbb{A}}$ for each $\alpha<\omega_{2}$.
Then in the final model $V^{\mathbb{P}_{\omega_{2}}}$ we have

$$
\omega_{1}=\operatorname{cov}(\mathcal{N})=\operatorname{cov}(\mathcal{M})=\mathfrak{h}<\operatorname{add}\left(s^{0}\right)=\mathfrak{s}=\mathfrak{b}=\mathfrak{c}=\omega_{2}
$$

Main Theorem (Spinas-W.)

Assume CH . Let $\left\langle\left(\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}\right): \alpha<\omega_{2}\right\rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha}=\dot{\mathbb{A}}$ for each $\alpha<\omega_{2}$.
Then in the final model $V^{\mathbb{P}_{\omega_{2}}}$ we have

$$
\omega_{1}=\operatorname{cov}(\mathcal{N})=\operatorname{cov}(\mathcal{M})=\mathfrak{h}<\operatorname{add}\left(s^{0}\right)=\mathfrak{s}=\mathfrak{b}=\mathfrak{c}=\omega_{2} .
$$

Main Theorem (Spinas-W.)

Assume CH . Let $\left\langle\left(\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}\right): \alpha<\omega_{2}\right\rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha}=\dot{\mathbb{A}}$ for each $\alpha<\omega_{2}$.
Then in the final model $V^{\mathbb{P}_{\omega_{2}}}$ we have

$$
\omega_{1}=\operatorname{cov}(\mathcal{N})=\operatorname{cov}(\mathcal{M})=\mathfrak{h}<\operatorname{add}\left(s^{0}\right)=\mathfrak{s}=\mathfrak{b}=\mathfrak{c}=\omega_{2}
$$

$$
\omega_{1}=\operatorname{cov}(\mathcal{N})=\operatorname{cov}(\mathcal{M})=\mathfrak{h}<\operatorname{add}\left(s^{0}\right)=\mathfrak{s}=\mathfrak{b}=\mathfrak{c}=\omega_{2} .
$$

Definition

Let \mathbb{P} be a tree forcing (on $2^{<\omega}$). Then

$$
J(\mathbb{P}):=\left\{X \subseteq 2^{\omega}: \forall p \in \mathbb{P} \exists q \in \mathbb{P} \text { with } q \leq p \text { and }[q] \cap X=\emptyset\right\}
$$

denotes the null ideal associated to \mathbb{P}. (Analog., for tree forcings on $\omega^{<\omega}$.)
Examples:

- $s^{0}:=J(\mathbb{S})$ be the Marczewski ideal (or ideal of Marczewski null sets),
- $\ell^{0}:=J(\mathbb{L})$ be the ideal of Laver null sets,
- $m^{0}:=J(\mathbb{M})$ be the ideal of Miller null sets.
(all these ideals are σ-ideals - due to fusion)

Main Theorem (Spinas-W.)

Assume CH . Let $\left\langle\left(\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}\right): \alpha<\omega_{2}\right\rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha}=\dot{\mathbb{A}}$ for each $\alpha<\omega_{2}$.
Then in the final model $V^{\mathbb{P}_{\omega_{2}}}$ we have

$$
\omega_{1}=\operatorname{cov}(\mathcal{N})=\operatorname{cov}(\mathcal{M})=\mathfrak{h}<\operatorname{add}\left(s^{0}\right)=\mathfrak{s}=\mathfrak{b}=\mathfrak{c}=\omega_{2}
$$

Main Theorem (Spinas-W.)

Assume CH . Let $\left\langle\left(\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}\right): \alpha<\omega_{2}\right\rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha}=\dot{\mathbb{A}}$ for each $\alpha<\omega_{2}$.
Then in the final model $V^{\mathbb{P}_{\omega_{2}}}$ we have

$$
\omega_{1}=\operatorname{cov}(\mathcal{N})=\operatorname{cov}(\mathcal{M})=\mathfrak{h}<\operatorname{add}\left(s^{0}\right)=\mathfrak{s}=\mathfrak{b}=\mathfrak{c}=\omega_{2}
$$

Theorem (Goldstern-Repický-Shelah-Spinas)

(1) If $\mathfrak{b}=\mathfrak{c}$, then $\operatorname{add}\left(\ell^{0}\right) \leq \mathfrak{h}$.
(2) If $\mathfrak{d}=\mathfrak{c}$, then $\operatorname{add}\left(m^{0}\right) \leq \mathfrak{h}$.

Corollary

(1) $\operatorname{CON}\left(\operatorname{add}\left(\ell^{0}\right)<\operatorname{add}\left(s^{0}\right)\right)$
(2) $\operatorname{CON}\left(\operatorname{add}\left(m^{0}\right)<\operatorname{add}\left(s^{0}\right)\right)$

Corollary (from previous slide)

(1) $\operatorname{CON}\left(\operatorname{add}\left(\ell^{0}\right)<\operatorname{add}\left(s^{0}\right)\right)$
(2) $\operatorname{CON}\left(\operatorname{add}\left(m^{0}\right)<\operatorname{add}\left(s^{0}\right)\right)$

What about the cofinalities of these ideals?
Theorem (Fremlin; Judah-Miller-Shelah)
$\operatorname{cof}\left(s^{0}\right)>\mathfrak{c}$
Theorem (Brendle-Khomskii-W.)
$\operatorname{cof}\left(\ell^{0}\right)>\mathfrak{c}$ and $\operatorname{cof}\left(m^{0}\right)>\mathfrak{c}$

Corollary (from previous slide)

(1) $\operatorname{CON}\left(\operatorname{add}\left(\ell^{0}\right)<\operatorname{add}\left(s^{0}\right)\right)$
(2) $\operatorname{CON}\left(\operatorname{add}\left(m^{0}\right)<\operatorname{add}\left(s^{0}\right)\right)$

Theorem (Shelah-Spinas)

Let $\mathbb{Q}_{0}, \mathbb{Q}_{1}$ be forcings with $\mathbb{Q}_{0}, \mathbb{Q}_{1} \in\{\mathbb{S}, \mathbb{L}, \mathbb{M}$, Silver, Mathias $\}$ such that

$$
\omega_{1}=\operatorname{add}\left(J\left(\mathbb{Q}_{0}\right)\right)<\operatorname{add}\left(J\left(\mathbb{Q}_{1}\right)\right)=\omega_{2} \text { is consistent }
$$

then

$$
\operatorname{cof}\left(J\left(\mathbb{Q}_{1}\right)\right)<\operatorname{cof}\left(J\left(\mathbb{Q}_{0}\right)\right)=2^{\mathfrak{c}} \text { is consistent. }
$$

Corollary (from previous slide)

(1) $\operatorname{CON}\left(\operatorname{add}\left(\ell^{0}\right)<\operatorname{add}\left(s^{0}\right)\right)$
(2) $\operatorname{CON}\left(\operatorname{add}\left(m^{0}\right)<\operatorname{add}\left(s^{0}\right)\right)$

Theorem (Shelah-Spinas)

Let $\mathbb{Q}_{0}, \mathbb{Q}_{1}$ be forcings with $\mathbb{Q}_{0}, \mathbb{Q}_{1} \in\{\mathbb{S}, \mathbb{L}, \mathbb{M}$, Silver, Mathias $\}$ such that

$$
\omega_{1}=\operatorname{add}\left(J\left(\mathbb{Q}_{0}\right)\right)<\operatorname{add}\left(J\left(\mathbb{Q}_{1}\right)\right)=\omega_{2} \text { is consistent }
$$

then

$$
\operatorname{cof}\left(J\left(\mathbb{Q}_{1}\right)\right)<\operatorname{cof}\left(J\left(\mathbb{Q}_{0}\right)\right)=2^{\mathfrak{c}} \text { is consistent. }
$$

Corollary (in fact, the incentive for the Main Theorem)
(1) $\operatorname{CON}\left(\operatorname{cof}\left(s^{0}\right)<\operatorname{cof}\left(\ell^{0}\right)\right)$
(2) $\operatorname{CON}\left(\operatorname{cof}\left(s^{0}\right)<\operatorname{cof}\left(m^{0}\right)\right)$

Main Theorem (Spinas-W.)

Assume CH . Let $\left\langle\left(\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}\right): \alpha<\omega_{2}\right\rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha}=\dot{\mathbb{A}}$ for each $\alpha<\omega_{2}$.
Then in the final model $V^{\mathbb{P}_{\omega_{2}}}$ we have

$$
\omega_{1}=\operatorname{cov}(\mathcal{N})=\operatorname{cov}(\mathcal{M})=\mathfrak{h}<\operatorname{add}\left(s^{0}\right)=\mathfrak{s}=\mathfrak{b}=\mathfrak{c}=\omega_{2}
$$

Main Theorem (Spinas-W.)

Assume CH . Let $\left\langle\left(\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}\right): \alpha<\omega_{2}\right\rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha}=\dot{\mathbb{A}}$ for each $\alpha<\omega_{2}$.
Then in the final model $V^{\mathbb{P}_{\omega_{2}}}$ we have

$$
\omega_{1}=\operatorname{cov}(\mathcal{N})=\operatorname{cov}(\mathcal{M})=\mathfrak{h}<\operatorname{add}\left(s^{0}\right)=\mathfrak{s}=\mathfrak{b}=\mathfrak{c}=\omega_{2}
$$

We only know of two other models in which $\mathfrak{h}<\mathfrak{s}=\mathfrak{b}$ holds true:
(1) Shelah's model for $\omega_{1}=\mathfrak{h}<\mathfrak{s}=\mathfrak{b}=\operatorname{cov}(\mathcal{M})=\mathfrak{c}=\omega_{2}$
(2) Jossen and Spinas' model for $\omega_{1}=\operatorname{cov}(\mathcal{M})=\mathfrak{h}<\mathfrak{s}=\mathfrak{b}=\mathfrak{c}=\omega_{2}$

$$
\omega_{1}=\operatorname{cov}(\mathcal{N})=\operatorname{cov}(\mathcal{M})=\mathfrak{h}<\operatorname{add}\left(s^{0}\right)=\mathfrak{s}=\mathfrak{b}=\mathfrak{c}=\omega_{2} .
$$

For $f, g \in \omega^{\omega}$, we write $f \leq^{*} g$ if $f(n) \leq g(n)$ for all but finitely many n.

Definition ((un)bounding number)

$$
\mathfrak{b}:=\min \left\{|F|: F \subseteq \omega^{\omega} \wedge \neg \exists g \in \omega^{\omega}\left(f \leq^{*} g \text { for each } f \in F\right)\right\}
$$

Given $a, b \in[\omega]^{\omega}$, we say that a splits b if both $b \cap a$ and $b \backslash a$ are infinite.

Definition (splitting number(s))

$$
\mathfrak{s}:=\min \left\{|F|: F \subseteq[\omega]^{\omega} \wedge \forall b \in[\omega]^{\omega} \exists a \in F(a \text { splits } b)\right\}
$$

$\mathfrak{s}_{\sigma}:=\min \left\{|F|: F \subseteq[\omega]^{\omega} \wedge \forall\left\langle b_{n}\right\rangle_{n \in \omega} \subseteq[\omega]^{\omega} \quad \exists a \in F \forall n \in \omega\left(a\right.\right.$ splits $\left.\left.b_{n}\right)\right\}$
Clearly, $\mathfrak{s} \leq \mathfrak{s}_{\sigma}$.
Question (old open question)
Is it consistent with ZFC that $\mathfrak{s}<\mathfrak{s}_{\sigma}$?

Theorem (Hein-Spinas; for regular c: Simon,Judah-Miller-Shelah)

$\operatorname{add}\left(s^{0}\right) \leq \mathfrak{b}$.
Let

$$
\mathfrak{a}(\mathbb{S}):=\min \left\{|A|:|A|>\aleph_{0} \wedge A \subseteq \mathbb{S} \text { is a maximal antichain }\right\}
$$

Clearly, $\aleph_{1} \leq \mathfrak{a}(\mathbb{S}) \leq \mathfrak{c}$.

Theorem (Hein-Spinas)

$\mathfrak{d} \leq \mathfrak{a}(\mathbb{S})$.

Theorem (Hein-Spinas; for regular c: Simon,Judah-Miller-Shelah)

 $\operatorname{add}\left(s^{0}\right) \leq \mathfrak{b}$.
Theorem (Hein-Spinas)

$\mathfrak{d} \leq \mathfrak{a}(\mathbb{S})$.

Corollary

$\operatorname{add}\left(s^{0}\right) \leq \mathfrak{a}(\mathbb{S})$.
Theorem (Spinas-W.)
Assume $\mathfrak{a}(\mathbb{S})=\mathfrak{c}$. Then $\operatorname{add}\left(s^{0}\right) \leq \mathfrak{s}_{\sigma}$.
Corollary
$\operatorname{add}\left(s^{0}\right)=\mathfrak{c}$ implies $\mathfrak{s}_{\sigma}=\mathfrak{c}$.

Corollary (from previous slide)

 $\operatorname{add}\left(s^{0}\right)=\mathfrak{c}$ implies $\mathfrak{s}_{\sigma}=\mathfrak{c}$.
Question

Does $\operatorname{add}\left(s^{0}\right)=\mathfrak{c}$ imply $\mathfrak{s}=\mathfrak{c}$?
Theorem (Spinas-W.; from previous slide)
Assume $\mathfrak{a}(\mathbb{S})=\mathfrak{c}$. Then $\operatorname{add}\left(s^{0}\right) \leq \mathfrak{s}_{\sigma}$.

Theorem (Spinas-W.)

Assume $\mathfrak{a}(\mathbb{S})=\mathfrak{c}$ and $\operatorname{add}\left(s^{0}\right) \leq \operatorname{cov}(\mathcal{M}) . \operatorname{Then} \operatorname{add}\left(s^{0}\right) \leq \mathfrak{s}$.

Corollary

 $\operatorname{add}\left(s^{0}\right)=\operatorname{cov}(\mathcal{M})=\mathfrak{c}$ implies $\mathfrak{s}=\mathfrak{c}$.Given $p \in \mathbb{S}$, let $s_{p}=\left\langle s_{p}(i): i<\omega\right\rangle$ be the canonical enumeration of the splitting nodes of p.

Definition (increasing Sacks amoeba, by Louveau-Shelah-Veličković)

Elements of \mathbb{A} are pairs $\boldsymbol{p}=(p, n)$ such that

- $p \in \mathbb{S}$,
- $n<\omega$ (we call $n=: d p(\boldsymbol{p})$ the depth of \boldsymbol{p}),
- p is increasing (meaning that $\langle | s_{p}(i)|: i<\omega\rangle$ is strictly increasing).

Given $\boldsymbol{p}=\left(p, n^{p}\right), \boldsymbol{q}=\left(q, n^{q}\right) \in \mathbb{A}$, we let $\boldsymbol{q} \leqslant \boldsymbol{p}$ if

- $q \leq p$,
- $n^{p} \leq n^{q}$,
- $s_{q}(i)=s_{p}(i)$ for each $i \leq n^{p}$.

We say $\boldsymbol{q} \leqslant{ }^{0} \boldsymbol{p}(\boldsymbol{q}$ is a pure extension of $\boldsymbol{p})$ if $\boldsymbol{q} \leqslant \boldsymbol{p} \wedge n^{q}=n^{p}$.
Moreover, we have stronger relations \leqslant^{m} for constructing fusion sequences.

Theorem (Pure decision)

Suppose $N \in \omega, \boldsymbol{p} \in \mathbb{A}$, and $\boldsymbol{p} \Vdash \dot{\mu} \in N$. Then there is $\boldsymbol{q} \leqslant{ }^{0} \boldsymbol{p}$ and $i \in N$ such that $\boldsymbol{q} \Vdash \dot{\mu}=i$.

Moreover: for each $m \in \omega$, there are $F \subseteq N$ with $|F| \leq 3^{m}$ and $\boldsymbol{q} \leqslant^{m} \boldsymbol{p}$ such that $\boldsymbol{q} \Vdash \dot{\mu} \in F$.

Theorem

\mathbb{A} has the Laver property.
In particular, no Cohen reals and no random reals are added by \mathbb{A}, so

$$
\operatorname{cov}(\mathcal{N})=\operatorname{cov}(\mathcal{M})=\omega_{1}
$$

in the final model $V^{\mathbb{P}_{\omega_{2}}}$ of our Main Theorem.
\mathbb{A} increases $\operatorname{add}\left(s^{0}\right)$ (actually the purpose of every Sacks amoeba):

Theorem (well-known)

Assume CH . Let $\left\langle\left(\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}\right): \alpha<\omega_{2}\right\rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha}=\dot{\mathbb{A}}$ for each $\alpha<\omega_{2}$.
Then in the final model $V^{\mathbb{P}} \omega_{2}$ we have

$$
\operatorname{add}\left(s^{0}\right)=\omega_{2}
$$

Several ways to to read off a dominating real d from the generic, e.g.

$$
d(n):=\left|s_{p_{G}}(n)\right|,
$$

where $s_{p_{G}}=\left\langle s_{p_{G}}(i): i<\omega\right\rangle$ is the canonical enumeration of the splitting nodes of the generic tree p_{G}.

Theorem (easy)

\mathbb{A} adds a dominating real. More specifically:
$\Vdash \dot{d}$ is a dominating real.
Hence

$$
\mathfrak{b}=\omega_{2}
$$

in the final model $V^{\mathbb{P}_{\omega_{2}}}$ of our Main Theorem.

Let $x \in\left[p_{G}\right]$ be the leftmost (or any) branch through the generic tree p_{G}; then

$$
\operatorname{split}\left(p_{G}\right) \cap\{x \upharpoonright n: n \in \omega\}
$$

is not split by any set $a \in\left[2^{<\omega}\right]^{\omega}$ from the ground model. So:

Theorem (quite easy)

\mathbb{A} adds a real which is not split by any ground model real.
Hence

$$
\mathfrak{s}=\omega_{2}
$$

in the final model $V^{\mathbb{P}} \omega_{2}$ of our Main Theorem.

So why is

$$
\mathfrak{h}=\omega_{1}
$$

"You want proof? I'll give you proof!"

"You want proof? I'll give you proof!"
http://www.math.uni-kiel.de/logik/de/spinas/a-sacks-amoeba-preserving-distributivity-of-p-omega-fin-with-w-wohofsky

Let $x, y \in[\omega]^{\omega}$.

- x is almost contained in $y\left(x \subseteq^{*} y\right)$ if $x \backslash y$ is finite
- x and y are almost disjoint if $x \cap y$ is finite

Definition

A family $\mathcal{A} \subseteq[\omega]^{\omega}$ is an almost disjoint (ad) if x and y are almost disjoint for each $x, y \in \mathcal{A}$ with $x \neq y$.
\mathcal{A} is maximal almost disjoint (mad) family if it is a maximal ad family; in other words: and for each $z \in[\omega]^{\omega}$ there is an $x \in \mathcal{A}$ with $|z \cap x|=\aleph_{0}$.

Definition

\mathcal{A}_{1} refines \mathcal{A}_{0} if for each $x \in \mathcal{A}_{1}$ there is $y \in \mathcal{A}_{0}$ with $x \subseteq^{*} y$. $\left\langle\mathcal{A}_{\nu}: \nu<\omega_{1}\right\rangle$ is a matrix (of mad families) if \mathcal{A}_{ν} is mad for each $\nu<\omega_{1}$, and $\mathcal{A}_{\nu_{1}}$ refines $\mathcal{A}_{\nu_{0}}$ for any $\nu_{0} \leq \nu_{1}<\omega_{1}$.

Definition

We say that $a \in[\omega]^{\omega}$ intersects a matrix $\left\langle\mathcal{A}_{\nu}: \nu<\omega_{1}\right\rangle$ if

$$
\text { for each } \nu<\omega_{1} \text { there is a } y \in \mathcal{A}_{\nu} \text { with } a \subseteq^{*} y .
$$

A matrix is intersected if there is a real $a \in[\omega]^{\omega}$ intersecting it.
The following is more or less by definition:

Fact

$\mathfrak{h}=\omega_{1}$ if and only if there exists a matrix $\left\langle\mathcal{A}_{\nu}: \nu<\omega_{1}\right\rangle$ of mad families which is not intersected.

Theorem (main part of our main theorem)

Assume CH . Let $\left\langle\left(\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}\right): \alpha<\omega_{2}\right\rangle$ be the countable support iteration with $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha}=\dot{\mathbb{A}}$ for each $\alpha<\omega_{2}$.

Then in the final model $V^{\mathbb{P}_{\omega_{2}}}$ we have a matrix which is not intersected, hence

$$
\mathfrak{h}=\omega_{1} .
$$

Proof.

- define the notion of a well-prepared matrix
- show that a well-prepared matrix is not intersected
(never: not after forcing with \mathbb{A}, nor later - using Laver property)
- construct a well-prepared matrix in the ground model
- \mathbb{A} adds dominating reals, so madness is destroyed all the time
- so we have to (cofinally) extend our matrix along the iteration

Theorem

In V, let $\left\langle\mathcal{A}_{\nu}: \nu<\omega_{1}\right\rangle$ be a well-prepared matrix.
Then

$$
V^{\mathbb{A}} \models \text { the matrix }\left\langle\mathcal{A}_{\nu}: \nu<\omega_{1}\right\rangle \text { is not intersected, }
$$

where $V^{\mathbb{A}}$ is the extension by a single Sacks amoeba forcing \mathbb{A}.
Moreover, the same holds true in any further Laver property extension:

$$
V^{\mathbb{A} * \dot{\mathbb{R}}} \models \text { the matrix }\left\langle\mathcal{A}_{\nu}: \nu<\omega_{1}\right\rangle \text { is not intersected, }
$$

where $\dot{\mathbb{R}}$ is forced to have the Laver property.

Theorem

In V, let $\left\langle\mathcal{A}_{\nu}: \nu<\omega_{1}\right\rangle$ be a well-prepared matrix.
Then

$$
V^{\mathbb{A}} \models \text { the matrix }\left\langle\mathcal{A}_{\nu}: \nu<\omega_{1}\right\rangle \text { is not intersected, }
$$

where $V^{\mathbb{A}}$ is the extension by a single Sacks amoeba forcing \mathbb{A}.

Theorem

In V, let $\left\langle\mathcal{A}_{\nu}: \nu<\omega_{1}\right\rangle$ be a well-prepared matrix.
Then

$$
V^{\mathbb{A}} \models \text { the matrix }\left\langle\mathcal{A}_{\nu}: \nu<\omega_{1}\right\rangle \text { is not intersected, }
$$

where $V^{\mathbb{A}}$ is the extension by a single Sacks amoeba forcing \mathbb{A}.

Definition

We call a matrix $\left\langle\mathcal{A}_{\nu}: \nu<\omega_{1}\right\rangle$ a well-prepared matrix if for each labelled condition $(\boldsymbol{q}, \lambda)$ there is $\boldsymbol{q}_{0} \leqslant{ }^{0} \boldsymbol{q}$ and $\gamma<\omega_{1}$ such that the following holds:

$$
\text { there is no } \boldsymbol{q}^{\prime} \leqslant \boldsymbol{q}_{0} \text { with } K\left(\boldsymbol{q}^{\prime}\right) \text { "deciding" }\left\langle\mathcal{A}_{\nu}: \nu<\gamma\right\rangle .
$$

Let $\operatorname{Ext}(\boldsymbol{q})$ be the set of maximal elements of the set

$$
\{\boldsymbol{r} \leqslant \boldsymbol{q}: d p(\boldsymbol{r})=d p(\boldsymbol{q})+1\}
$$

For $\boldsymbol{r}=\left(r, n^{r}\right) \in \mathbb{A}$, let

$$
\sigma(\boldsymbol{r}):=s_{r}\left(n^{r}\right)
$$

i.e., the last splitting node of r which still belongs to the "fixed" part of \boldsymbol{r}.

Definition

Let $\boldsymbol{q} \in \mathbb{A}$. We say that $\lambda: \operatorname{Ext}(\boldsymbol{q}) \rightarrow \omega$ is a labelling function for \boldsymbol{q} if

$$
\lambda\left(\boldsymbol{r}_{0}\right) \neq \lambda\left(\boldsymbol{r}_{1}\right) \text { whenever } \boldsymbol{r}_{0}, \boldsymbol{r}_{1} \in \operatorname{Ext}(\boldsymbol{q}) \text { with } \sigma\left(\boldsymbol{r}_{0}\right) \neq \sigma\left(\boldsymbol{r}_{1}\right) .
$$

We call $(\boldsymbol{q}, \lambda)$ a labelled condition.
Let $K(\boldsymbol{q}):=\{\lambda(\boldsymbol{r}): \boldsymbol{r} \in \operatorname{Ext}(\boldsymbol{q})\}$

Imagine \dot{a} is an \mathbb{A}-name for a potential candidate for intersecting a matrix of mad families, i.e., an \mathbb{A}-name for an infinite subset of ω; the idea is to segment it by the interval partition

$$
\{[d(n-1), d(n)): n \in \omega\}
$$

given by the dominating real d. We can assume without generality that

$$
\Vdash|\dot{a} \cap[\dot{d}(n-1), \dot{d}(n))| \leq 1 ;
$$

let \dot{a}_{n} be such that

$$
\Vdash\left\{\dot{a}_{n}\right\}=\dot{a} \cap[\dot{d}(n-1), \dot{d}(n))
$$

in case $\dot{a} \cap[\dot{d}(n-1), \dot{d}(n))$ is non-empty, and

$$
\Vdash \dot{a}_{n}=\text { Empty }
$$

otherwise.

We say that $f: \operatorname{Ext}(\boldsymbol{p}) \rightarrow F$ is an open coloring if for $\boldsymbol{q} \in \operatorname{Ext}(\boldsymbol{p})$, we have

$$
\boldsymbol{q}^{\prime} \leqslant{ }^{0} \boldsymbol{q} \Longrightarrow f\left(\boldsymbol{q}^{\prime}\right)=f(\boldsymbol{q})
$$

BlackBox

Let $\boldsymbol{p} \in \mathbb{A}$, and $f: \operatorname{Ext}(\boldsymbol{p}) \rightarrow F$ be open coloring with finitely many colors. Then there is $\boldsymbol{q} \leqslant{ }^{0} \boldsymbol{p}$ and $c \in F$ such that $f(\boldsymbol{r})=c$ for each $\boldsymbol{r} \in \operatorname{Ext}(\boldsymbol{q})$.

BlackBox

Let $\boldsymbol{p} \in \mathbb{A}$, and $f: \operatorname{Ext}(\boldsymbol{p}) \rightarrow \omega$ be an open coloring. Then there is $\boldsymbol{q} \leqslant^{0} \boldsymbol{p}$ such that either (i) or (ii) holds:
(1) there is an $\ell \in \omega$ such that $f(\boldsymbol{r})=\ell$ for each $\boldsymbol{r} \in \operatorname{Ext}(\boldsymbol{q})$,
(2) $f\left(\boldsymbol{r}_{0}\right) \neq f\left(\boldsymbol{r}_{1}\right)$ whenever $\boldsymbol{r}_{0}, \boldsymbol{r}_{1} \in \operatorname{Ext}(\boldsymbol{q})$ with $\sigma\left(\boldsymbol{r}_{0}\right) \neq \sigma\left(\boldsymbol{r}_{1}\right)$.

Thank you for your attention and enjoy the Winter School. . .

Smrk 2019 (in fact, yesterday)

Thank you for your attention and enjoy the Winter School. . .

Smrk 2019 (in fact, yesterday)

Thank you for your attention and enjoy the Winter School. . .

Hejnice 2011

Thank you for your attention and enjoy the Winter School. . .

Hejnice 2011

Thank you for your attention and enjoy the Winter School. . .

Hejnice 2011

